

Published on Web 03/24/2009

Catalytic Reduction of O₂ by Cytochrome *c* Using a Synthetic Model of Cytochrome *c* Oxidase

James P. Collman,* Somdatta Ghosh, Abhishek Dey, Richard A. Decréau, and Ying Yang

Department of Chemistry, Stanford University, Stanford, California 94305

Received January 9, 2009; E-mail: jpc@stanford.edu

Cytochrome c oxidase (CcO) performs a four-electron reduction of oxygen to water in the last step of respiration.¹ The active site in CcO consists of a heme/Cu site having a post-translationally modified tyrosine residue covalently bound to one of the histidine ligands of the distal Cu (Figure 1A).² Cytochrome c (Cytc), a small electrontransfer protein, is the source of electrons for CcO. Cvtc has a coordinatively saturated low-spin heme active site (Figure 1B).¹ Mimicking of the structure and function of CcO using synthetic model complexes has attracted significant attention over the last two decades.³⁻⁵ Recently, a model of CcO that incorporates a heme with a covalently attached proximal imidazole, a trisimidazole distal binding pocket for Cu, and a covalently modified tyrosine (Y244) analogue has been reported (FeCuPhOH, Figure 1C).⁶ This functional model catalyzes the selective four-electron reduction of oxygen at physiological pH using an electrode as the source of electrons and generates negligible (<4%) partially reduced oxygen species (PROS) during catalytic turnover.⁷ Herein we report the selective catalytic four-electron reduction of oxygen by the biological one-electron reductant Cytc (from horse heart) using this functional CcO model in a homogeneous mixed solvent system.

Figure 1. Active-site structures of (A) CcO, (B) Cytc, and (C) FeCuPhOH, a synthetic model of CcO.

This homogeneous reaction was monitored by following the oxidation of reduced Cyt*c* by O₂ in the presence of 2% FeCuPhOH catalyst. Figure 2 shows the kinetic traces. These data show a decrease in the percentage of reduced Cyt*c* at a pseudo-first-order rate of $1.3 \times 10^{-3} \text{ s}^{-1}$, which is much greater than that for the slow auto-oxidation of reduced Cyt*c* ($\sim 1 \times 10^{-5} \text{ s}^{-1}$).⁸ Monitoring of the O₂ concentration of the solution before and after the reaction showed that 3.9 ± 0.1 equiv of reduced Cyt*c* is oxidized per equivalent of O₂ consumed, indicating that this oxidation process is *stoichiometric* within experimental error. The rate of catalysis ($k_{obs}/[\text{catalyst}]$) was pH-dependent, decreasing from (3.9 ± 0.2) $\times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ at pH 6–7 to (1.8 ± 0.1) $\times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ at pH 8 [Figure S1A in the Supporting Information (SI)], indicating that protonation may be rate-determining at high pH.

experimental conditions, only 25 turnovers (i.e., 1 equiv of catalyst oxidized 100 equiv of Cytc) could be obtained.⁹ The turnover number for this catalyst was determined by studying its electrocatalytic O₂ reduction. The catalyst modified with an alkyne linker was "clicked" onto a C₁₆SH thiol in a self-assembled monolayer (SAM; see the SI for details). The SAM limits the rate of electron transfer from the electrode to the catalyst to 4 s⁻¹.⁷ Electrolysis of this covalently bound catalyst at physiological potentials gave a turnover number of (9 ± 1) × 10³.

Because of limitations in the solubility of Cytc under these

Figure 2. Kinetic traces showing the decrease of reduced Cytc (following the 550 nm band intensity) in the presence of 2% FeCuPhOH by aerated (darkblue) and O_2 -saturated (light-blue) 1:1 aqueous buffer/acetonitrile solvent at pH 7 and 25 °C. Inset: absorption spectra of reduced (black) and oxidized (red) Cytc. The blue arrow indicates the 550 nm band.

Reduction of O₂ using reduced Cyt*c* with the catalyst was studied under various conditions with the aim of elucidating the mechanism and identifying the rate-determining step (rds) during catalytic turnover. The proposed mechanism for the four-electron reduction of O₂ by Cyt*c* is presented in Scheme 1. In the first step, O₂ binds to the reduced catalyst, forming an Fe^{III}–superoxo species (Scheme 1, step A). Since the catalyst contains four electrons (two from Fe^{II}, one from Cu^I, and one from phenol), the next step leads to the formation of a "P_M" intermediate comprising of an oxidized Cu^{II}, an Fe^{IV}=O ferryl radical, and a phenoxide radical (Scheme 1, step B).^{6b} This oxidized intermediate is then reduced by 4 equiv of Cyt*c*, regenerating the fully reduced active catalyst (Scheme 1, steps C and D). The rds could involve (a) O₂ binding, (b) O–O bond cleavage, or (c) electron transfer from reduced Cyt*c* to the oxidized catalyst.

The turnover rate increased by more than a factor of 2 when an O₂-saturated solution was used instead of an air-saturated solution (Figure 2). This indicates that O₂ binding may be the rds. The catalytic reaction showed a modest inverse deuterium isotope effect ($k_{\rm H}/k_{\rm D}$) of 0.82. Also, there was no change in the rate of O₂ reduction when the concentration of reduced Cyt*c* was varied at constant catalyst concentration (Figure S1B in the SI). This indicates that electron transfer from reduced Cyt*c* is rapid and is not involved in the rds during

catalytic turnover. Single turnover kinetics experiments were performed with the FeCuPhOH catalyst and the "Fe-only" complex (without Cu and phenol) to obtain the corresponding rates of O₂ binding and electron transfer.

The Fe-only complex acts as a control to measure the rate of O₂ binding to the catalyst (Scheme 1, step A), as this complex lacks the necessary reducing equivalents for the O-O bond cleavage (Scheme 1, step B). The reaction of O_2 with the reduced Fe^{II} complex was monitored by following the characteristic Fe^{II} absorption at 434 nm (Figure 3); this showed an O_2 binding rate of 0.5 s⁻¹ to form a ferric superoxide species, followed by its slow hydrolysis with a rate of 0.05 s⁻¹ (Figure S3). Parallel monitoring of the Fe^{II} state of the FeCuPhOH catalyst at 434 nm showed monophasic O₂ binding with a rate of 0.1 s^{-1} (Figure 3). EPR and UV-vis spectra of the reaction product at 40 s indicated that it is identical to the chemically produced Fe^{III}Cu^{II} species (Figures S3 and S4 in the SI). Since the FeCuPhOH catalyst reduces O₂ stoichiometrically (see above) and the amount of the hydrolysis side reaction is negligible (<4% PROS),⁷ the monophasic kinetics of the O₂ reaction (i.e., no intermediates observed) implies that rates of O-O bond cleavage (Scheme 1, step B) and decay of the high-valent intermediate (Scheme 1, step C) must be much greater than 0.1 s⁻¹. The rate of O₂ binding to the fully reduced FeCuPhOH catalyst is less than that to the Fe-only complex, possibly because of greater steric hindrance in the former due to the phenol substituent. It should be noted that the rates of O₂ binding (Scheme 1, step A) for these complexes are much less that those reported for CcO and other O2-binding heme proteins and model complexes.10-12 We have recently shown that this slow O₂ binding is due to the presence of an axial water ligand that H-bonds to additional H2O molecules in the distal pocket, making the ferrous catalyst low-spin in nature (Figure S5 in the SI), in contrast to the high-spin five-coordinate ferrous active site of the enzyme.^{1,13} The small inverse kinetic isotope effect observed during catalytic turnover is consistent with displacement of a bound water in the rds.¹⁴

Scheme 1. Possible Mechanism of O2 Reduction by Cytc in the Presence of the FeCuPhOH CcO Model Complex

The second-order rate constants (k^{second}) for electron transfer between reduced Cytc and the oxidized Fe^{III}Cu^{II}PhOH catalyst and Fe^{III}-only complex (Scheme 1, step D) under anaerobic conditions were independently estimated to be $(4 \pm 0.1) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ (Figure S6). This translates to a pseudo-first-order rate constant (= k^{second} [Cyt c^{2+}]) of $\sim 1.2 \text{ s}^{-1}$ under catalytic turnover. The rate of O₂ binding (0.1 s⁻¹) is at least 10 times less than the rate of electron transfer from reduced Cytc to the Fe^{III}Cu^{II}PhOH catalyst. The rates of reduction of the ferryl and tyrosyl radical species (Scheme 1, step C) are arguably greater than the rate of reduction of $Fe^{III}Cu^{II}$ (Scheme 1, step D), as they have higher driving forces for electron transfer. Comparison of these rates indicates that O₂ binding is the rds during catalytic turnover at physiological pH, whereas both the O-O bond cleavage and electron transfer steps are relatively fast.

Figure 3. Kinetic traces showing the decrease of 434 nm absorption intensity of the Fe-only complex (red) and the FeCuPhOH catalyst (blue) in the presence of O₂. Inset: absorption spectra of the reduced Fe-only (red) and FeCuPhOH (blue) complexes. The black arrow indicates the 434 nm band.

In summary, we have demonstrated that our functional model of CcO can catalyze the selective four-electron reduction of O_2 using the biological reductant Cytc. The rate-determining step in the catalytic cycle is O₂ binding to the catalyst. The rate of O-O bond cleavage is $\gg 0.1 \text{ s}^{-1}$. The oxidized products are rapidly reduced back to the active form by reduced Cytc. We believe this is the first report of kinetically inert O₂ being reduced to H₂O by Cytc using a synthetic functional model as a catalyst.

Acknowledgment. This research was funded by NIH GM-17880-38 (J.P.C.).

Supporting Information Available: Experimental details; plots showing pH dependence, Cytc concentration dependence, and turnover number; UV-vis, EPR, and resonance Raman spectra; and an electron transfer rate plot. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Ferguson-Miller, S.; Babcock, G. T. Chem. Rev. 1996, 96, 2889.
- (2) (a) Iwata, S.; Ostermeier, C.; Ludwig, B.; Michel, H. Nature 1995, 376, 660. (b) Yoshikawa, S.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yamashita, E.; Inoue, N.; Yao, M.; Fei, M. J.; Libeu, C. P.; Mizushima, T.; Yamaguchi, H.; Tomizaki, T.; Tsukihara, T. *Science* **1998**, *280*, 1723. (c) Fei, M. J.; Yamashita, E.; Ihoue, N.; Yao, M.; Yamaguchi, H.; Tsukihara, T.; Shinzawa-Itoh, K.; Nakashima, R.; Yoshikawa, S. *Acta Crystallogr.*, Sect. D: Biol. Crystallogr. 2000, 56, 529
- Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Chem. Rev. 2004, 104, 561
- (4)Kim, K.; Chufán, E. E.; Kamaraj, K.; Karlin, K. D. Chem. Rev. 2004, 104, 1077
- (a) Liu, J.-G.; Naruta, Y.; Tani, F.; Chishiro, T.; Tachi, Y. Chem. Commun. **2004**, 120. (b) Liu, J.-G.; Naruta, Y.; Tani, F. Angew. Chem., Int. Ed. **2005**, (5)44, 1836.
- (a) Collman, J. P.; Decréau, R. A.; Zhang, C. J. Org. Chem. 2004, 69, 3546. (b) Collman, J. P.; Decréau, R. A.; Yan, Y.; Yoon, J.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 5794.
- Collman, J. P.; Devaraj, N. K.; Decréau, R. A.; Yang, Y.; Yan, Y.-L.; Ebina, (7)W.; Eberspacher, T. A.; Chidsey, C. E. D. Science 2007, 315, 1565.
 (8) Harrington, J. P.; Carrier, T. L. Int. J. Biochem. 1985, 17, 119.
- Increased amounts of Cyte slowly precipitated while the 1:1 buffer/acetonitrile solvent system used to dissolve both Cyte and the catalyst was stirred. The catalyst, however, had much higher turnover numbers (see the text).
- (10) Collman, J. P.; Brauman, J. I.; Iverson, B. L.; Sessler, J. L.; Morris, R. M.; Gibson, Q. H. J. Am. Chem. Soc. 1983, 105, 3052
- (11) Traylor, T. G.; White, D. K.; Campbell, D. H.; Berzinis, A. P. J. Am. Chem. Soc. 1981, 103, 4932
- (12) Verkhovsky, M. I.; Morgan, J. E.; Wikström, M. Biochemistry 1994, 33, 3079
- (13) Collman, J. P.; Decréau, R. A.; Dey, A.; Yang, Y. Proc. Natl. Acad. Sci. [Online early access]. DOI: 10.1073/pnas.0900995106. Published Online: Feb 25, 2009

(14) Welsh, K. M.; Creighton, D. J.; Klinman, J. P. Biochemistry 1980, 19, 2005. JA9001579